Calorie restriction increases cell surface GLUT-4 in insulin-stimulated skeletal muscle.
نویسندگان
چکیده
Reduced calorie intake [calorie restriction (CR); 60% of ad libitum (AL)] leads to enhanced glucose transport without altering total GLUT-4 glucose transporter abundance in skeletal muscle. Therefore, we tested the hypothesis that CR (20 days) alters the subcellular distribution of GLUT-4. Cell surface GLUT-4 content was higher in insulin-stimulated epitrochlearis muscles from CR vs. AL rats. The magnitude of this increase was similar to the CR-induced increase in glucose transport, and GLUT-4 activity (glucose transport rate divided by cell surface GLUT-4) was unaffected by diet. The CR effect was specific to the insulin-mediated pathway, as evidenced by the observations that basal glucose transport and cell surface GLUT-4 content, as well as hypoxia-stimulated glucose transport, were unchanged by diet. CR did not alter insulin's stimulation of insulin receptor substrate (IRS)-1-associated phosphatidylinositol 3-kinase (PI3K) activity. Muscle abundance of IRS-2 and p85 subunit of PI3K were unaltered by diet, but IRS-1 content was lower in CR vs. AL. These data demonstrate that, despite IRS-1-PI3K activity similar to AL, CR specifically increases insulin's activation of glucose transport by enhancing the steady-state proportion of GLUT-4 residing on the cell surface.
منابع مشابه
Epinephrine translocates GLUT-4 but inhibits insulin-stimulated glucose transport in rat muscle.
We examined the effects of epinephrine (25, 50, and 150 nM) on 1) basal and insulin-stimulated 3- O-methylglucose (3-MG) transport in perfused rat muscles and 2) GLUT-4 in skeletal muscle plasma membranes. Insulin increased glucose transport 330-600% in three types of skeletal muscle [white (WG) and red (RG) gastrocnemius and soleus (SOL)]. Glucose transport was also increased by epinephrine (2...
متن کاملAkt2 is essential for the full effect of calorie restriction on insulin-stimulated glucose uptake in skeletal muscle.
Brief calorie restriction (CR; 20 days of 60% of ad libitum [AL] intake) improves insulin-stimulated glucose transport, concomitant with enhanced phosphorylation of Akt2. The purpose of this study was to determine whether Akt2 is essential for the calorie restriction-induced enhancement in skeletal muscle insulin sensitivity. We measured insulin-stimulated 2-deoxyglucose (2DG) uptake in isolate...
متن کاملElectrical stimulation induces fiber type-specific translocation of GLUT-4 to T tubules in skeletal muscle.
Insulin and contraction independently stimulate glucose transport in skeletal muscle. Whereas insulin activates glucose transport more in muscles composed of type I and IIa fibers, electrical stimulation increases glucose transport at least as much in type IIb fiber-enriched muscles despite the fact that the latter fiber type contains less GLUT-4 glucose transporters. The aim of the present stu...
متن کاملRapid reversal of adaptive increases in muscle GLUT-4 and glucose transport capacity after training cessation.
Previous studies have shown that when exercise is stopped there is a rapid reversal of the training-induced adaptive increase in muscle glucose transport capacity. Endurance exercise training brings about an increase in GLUT-4 in skeletal muscle. The primary purpose of this study was to determine whether the rapid reversal of the increase in maximally insulin-stimulated glucose transport after ...
متن کاملInsulin-mediated translocation of GLUT-4-containing vesicles is preserved in denervated muscles.
Skeletal muscle denervation decreases insulin-sensitive glucose uptake into this tissue as a result of marked GLUT-4 protein downregulation ( approximately 20% of controls). The process of insulin-stimulated glucose transport in muscle requires the movement or translocation of intracellular GLUT-4-rich vesicles to the cell surface, and it is accompanied by the translocation of several additiona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American journal of physiology
دوره 275 6 Pt 1 شماره
صفحات -
تاریخ انتشار 1998